4 research outputs found

    Quanten-Gittersysteme mit diskreten Zeitschritten

    Get PDF
    Discrete time quantum lattice systems recently have come into the focus of quantum computation because they provide a versatile tool for many different applications and they are potentially implementable in current experimental realizations. In this thesis we study the fundamental structures of such quantum lattice systems as well as consequences of experimental imperfections. Essentially, there are two models of discrete time quantum lattice systems, namely quantum cellular automata and quantum walks, which are quantum versions of their classical counterparts, i.e., cellular automata and random walks. In both cases, the dynamics acts locally on the lattice and is usually also translationally invariant. The main difference between these structures is that quantum cellular automata can describe the dynamics of many interacting particles, where quantum walks describe the evolution of a single particle. The first part of this thesis is devoted to quantum cellular automata. We characterize one-dimensional quantum cellular automata in terms of an index theory up to local deformations. Further, we characterize in detail a subclass of quantum cellular automata by requiring that Pauli operators are mapped to Pauli operators. This structure can be understood in terms of certain classical cellular automata. The second part of this thesis is concerned with quantum walks. We identify a quantum walk with the one-particle sector of a quantum cellular automaton. We also establish an index theory for quantum walks and we discuss decoherent quantum walks, i.e., the behavior of quantum walks with experimental imperfections.Quanten-Gittersysteme haben in den letzten Jahren zunehmend an Bedeutung im Bereich des Quantenrechnens gewonnen, weil sie ein vielseitiges Instrument für unterschiedliche Anwendungen darstellen und in derzeitigen experimentellen Realisierungen potentiell implementierbar sind. Wir untersuchen in dieser Arbeit sowohl grundlegende Strukturen solcher Quanten-Gittersysteme als auch experimentelle Imperfektionen. Im wesentlichen gibt es zwei Modelle von Quanten-Gittersystemen in diskreter Zeit: Quanten-Zellularautomaten und Quanten Walks. In beiden Fällen ist die Dynamik lokal und translationsinvariant. Der Hauptunterschied besteht darin, dass Quanten-Zellularautomaten viele miteinander wechselwirkende Teilchen beschreiben können, wohingegen Quanten Walks die Zeitentwicklung eines einzelnes Teilchen darstellen. Zu beiden Modellen gibt es entsprechende klassischen Strukturen, nämlich Zellularautomaten, bzw. Random Walks. Im ersten Teil dieser Arbeit werden Quanten-Zellularautomaten behandelt. Wir charakterisieren eindimensionale Automaten mithilfe einer Index Theorie bis auf lokale Deformation. Außerdem untersuchen wir im Detail die Struktur einer Unterklasse von Quanten-Zellularautomaten, die dadurch festgelegt ist, dass Pauli Operatoren auf Pauli Operatoren abgebildet werden. Wir zeigen, dass sich solche Automaten durch spezielle klassische Zellularautomaten verstehen lassen. Im zweiten Teil dieser Arbeit behandeln wir Quanten Walks, welche wir mit Ein-Teilchen-Sektoren von Quanten-Zellularautomaten identifizieren. Wir führen ebenso eine Index Theorie für Quanten Walks ein und wir diskutieren dekohärente Quanten Walks, d.h., das Verhalten von Quanten Walks mit experimentellen Imperfektionen

    On the structure of Clifford quantum cellular automata

    Full text link
    We study reversible quantum cellular automata with the restriction that these are also Clifford operations. This means that tensor products of Pauli operators (or discrete Weyl operators) are mapped to tensor products of Pauli operators. Therefore Clifford quantum cellular automata are induced by symplectic cellular automata in phase space. We characterize these symplectic cellular automata and find that all possible local rules must be, up to some global shift, reflection invariant with respect to the origin. In the one dimensional case we also find that every uniquely determined and translationally invariant stabilizer state can be prepared from a product state by a single Clifford cellular automaton timestep, thereby characterizing these class of stabilizer states, and we show that all 1D Clifford quantum cellular automata are generated by a few elementary operations. We also show that the correspondence between translationally invariant stabilizer states and translationally invariant Clifford operations holds for periodic boundary conditions.Comment: 28 pages, 2 figures, LaTe
    corecore